RAANOYNONYYNINIOIYNIY Yl“fl\l“fl“fl\l\l“fl\l\w

3 Prefiling &Tracmg .

WI I'H PERF
O

What is using
all of my CPU?!

NS
L, &

O
Profile your
Programs!

with low overhead!

And more! . S

what's this?

(0!’\‘5 Linux I_)

'd

perf on Linux is one of my favourite
debugging tools. I+ lets you:

* teace system calls faster than strace
* proFile your €, Go, C++,node.js, Rust, and Sava /SVM

programs really easily
% trace or count almost *any™ kernel event

("perﬁ count how many poackets every Progg:ggs“

Tve even used it more than once to profile Ruby programs,
so it's not just for systems wizards.

This zine exp\ains both how to use the most
impor tant perf subeo mmands, ond o itHe bit

obout how pe(f— works under the hood .

let me show yey my favourite
perf features + how T use i1

SULlA EVAN 3

@bork
hffps://jvns.ca

pecf top

perf record
(tecord into pecf.datal

ana\cazmg pecf. datex A~~~ 3-9

per-? + node js /Sava ~~————— 10
kerne\ Fonctions in my stack trace?~ |\

X per{' cheat cheet # ~—~——— 12-13
perf staf ~—~—rr -5

perf trace 6
o perf-event.open
How per’? works
hi%\n—\evel overview |77
on kernel versions |8

how profiling with perfworks ~rn— | q

which languages perf can profile. ~—— 9.0

pec§ : under the hood 21-22
moce PemC resoucces 27

pert top

MB favourite place to start with peff' is
‘perF 'l'op'.

\

top

T Know houw much

well T know how
CPU &very program/f| much (PU every
is using ‘F._Ul‘i-o_" is usfnﬁ!
T like 1o con “perf tap’
ONn machines when o program
(s using 007 of the CPU
ond I don't Know why -

As an example, let's profile a really simple
Program]f wrete. T+ has a single Punmlior\
(“rur_awesome_-fundfdn“) which is an infinite loop-

H(’!e's +he code Vvoid run_awesome_function () {
int x = 0;
T ran. T called while (1) {
X

= X + 1,
+he binaru) }

Use_cpuu. int main() { run_awesome_function(); }

While that's running, start pecf top. It needs
+o run as root, like every perf subcommand.

3 sudo pecf top

perf top output

Here's what it looks like when T run Per{: top
when 'use_cpu' is runninj on my laptop:
0]

100, 00% use_cpu [.1 run_awesome_function
0,00% [kernel] [k] smp_call function_single
0,00% [kernel] [k] load_balance

® % of the CPU the function is usins
® name of program oc library

® function name /symbo)

This is tellmg vs that 100% of the cPU
time s berng spent in “run_awesome_function'

perf top can tell you both about
* functions in userspace programs

*x functions in the kernel

Here's what it looks like when the kemel is usingy a. lot of CPU:
kemel functions?
27.70% [kernel] ,[k] cpuidle_reflect
11.87% libxul.so _[.] _init
10.24% [kernel] —{k] ,aesni_encl

6.75% [kernel] *[k] end_bio_extent_writepage

3.94% [kernel] [k]) find_get_pages_contig

+his fonction is doi03 encr PJn‘on ("aes") because
Tm wrih.'B to an eﬂcrgpi'ec?-ﬁlesys’rem

pe(‘F recocd

Peﬁc top is great for ge'h‘fng a quick idea. of what's
happening, but T often want to investigate more in depth.

collects the same information as perF top

but it lets you save the dafal to analyse later.

TF saves it in o file called “pecf. data”
in your current direc‘f‘org .

I display
S

heg,here 's some

profiling data Y
) oor
é::g TNl save it i

o file called

pecf. data

There ace 3 main ways 4o choose what processtesd to
profile with perf recocd :

________________ | ¢— start COMMAND
' and peofile it until it
exits
o P « profile PID until you
(perT recora r .] press c¥rl tc

| o +— P“’%i\e every pcoces s
® :Egr_f_fe_c?l:d_ e until you pre:sjs Pc+rl+c
There's o 4th ‘n5bn‘d -Hning you can 4a: it you specif
bo+h o PID (or -a) and & command, it'll peofile the PID
until +he cammand exits. Like this:

l CoMM
PID_ COMMAND

perf _record -p 8325 sleep 5 |

4 This vseful +rick lets you p(’o‘Ffle PID 8325 for 5 seconds!

collect +racin6 data. with perF' ecord

So far we've collected peofiling data with perf:

(" what function is ronning ?\. When perf collects prafiling

da’ra, it samelgs — i¥'ll check whad fundion is running say

[00 +imes /second .

Bot pe(‘r' can also record lots of different kinds of

eveats . And when it records events, it doesn't sample -- i

7;? ask it 4o cecord system calls, {'ll attempd to cecord .
every single system call. gy

O list ever
Here are o few of +hose events: Ev_eft Y\“+ -
_ sys%‘em calls & oert 1ist§
- send ing network. packets I o
© \/

- reading from o block device (disk)

- (onJrex?' switches /page Faults

- and wou can make any kernel
fonction into an event! (that's called "kp(obes"\

For example, let's say you hove a program mak{ns outbound
network. connections, but you don't know which program
or N"“;y pecf can help!

This pect incantation recards every time o pogram connects
to o web secver (+he “connect') system call, and i+ also

records the stack tcace that led upto +hat sygmll. 4 means
collect
e i i oo [Stack

iperf record -e syscalls:sys_enter_connect -ag trace

Being able 1o take o syscall / page faolt/ disk weite and trace it
back 4o the exact code thal caused it is pretty magical.

Omo«(yz %ng

PerF cecocd data

3 ways Fo analyze o perf.date’ file genecated by

pect cecord:
perf report

100, 00% 0,00% use_cpu
100, 00% 0,00% use_cpu
100, 00% 100,00% use_cpu

VN I B A A
cur ! ‘.

: Per‘F annotate

[N RN NN

er!
N AT R T A

ossembln instructions !

quick inferactive repart showing

you which functions are used the most

use_cpu [.] main
libc-2.23.s0 [.] __libc_start_main
use_cpu [.1 run_awesome_function

100% of the +im/'! is spent in +this function!

Per‘F annotate will tell you which
o.ssemHS instructions your program
is sPendins most of its time
executing (be caceful, can be
off by one instruction)

Disassembly of section Ytext:

00000000004004d6 <run_awesome_function>:

0.00 :

4004d6:

0.00 : 4004d7:

0.00 : 4004da:

100.00 : 4004e1l:

0.00 : 4004e5:
Percent |

'\ns'\'N")(ion

use_cpu 23001}19774 L727477
stock [4e
Yo’

run_awesome_function():

symbol

in xruclio
push %rbp Ahis o\ the
mov %rsp,%rbp 16 where spe
movl $0x0, -0x4(%rbp) « _t-“nels being
addl $0x1, -0x4(%rbp)
jmp 4004e1 <run_awesome_function+0xb>

Source code & Disassembly of kcore for cycles:pp

perf scrip‘t' prints out all the
samples pecf collected as text so
You ¢an run scripts on the outpot
to do anal:js.'s. Like the ﬂamegraph
sceipt on the next pasel =

349732 cycles:pp:

1 run_awesome_function (/home/bork/work/perf-zine/use_cpu)
4f5 main (/home/bork/work/perf-zine/use_cpu)
20830 __libc_start_main (/1ib/x86_64-1inux-gnu/libc-2.23.s0)

8fe258d4c544155 [unknown] ([unknown])

]

‘F|ame3raph5

Flame smphs are an awesome way to visvalize
Pro§i|fn3 dato., invented § populacized by
Brendan Oreqg.

Here's what fhe% look like:

| bamboo28% | [Tbite 20% | [feeth 327 |
ponda 407, | alligator 607,
mMain 100 7 \

They're constructed £rom lots (usvally thousands) of stacktraces
Sampled from a program. This one above means that 40% of

the stacktraces started with [;‘:,,:4 and 32% with [au 5&*’0/}
teeth

To 3enera+e ‘f'amegmphs, gef

z github.com/brendangregg/ Flamegraph z

and put it in your PATH. Once you have that, heres
how to genecate a flamegraph.

di; sudo perf script | stackcollopse -perf.pl '

__ . _ _ _|flomegaaph.pl > graph.sug
/

open this in your browser!

(‘H\is is the same ‘pecf script’ fram the preveus paget)
q

perf+ MNSEIS - i

ava S

Normau% with interpreted lor\suo.ses like node. {s pecf
will tell you which intecpreter function is cunning but net which
5ovascn‘p1’ function is running. But:

@ %} We can help tell perf ,
Java what's going on! . .Jug\;inﬁme

This works because both node and Sava hae oo IIT

compiler.
) Ooo
function my_cool_fun { ov knaw, ITm @
// do a thing actually going to g
})us+ -in-time compile nOde'JS

that to machine cade

SIT campiled instructions

Ox offeaffe
f (9
Ox offebofe node. §S

node communicates with perf by writing a file called
/{'mp/per‘F- $PID. map

hey, those instructians

Correspond tothe
my- cool-Fun function

How to set this up:

S

node.js

N
Java

@ gef peck-map-agent fram github
@ Find PID of pracess
@ create -jova-perf-map-sh $PID

node -- per‘F -basic -prof
Prosra.m.ds

why are there kerme! functions % ?
in my stack *race 7

Sometimes you'll get a sfack trace From perf,
ond Yl mix foactions from your program

(like _._ getdents 6U) and functions from the
kecne) (like btrefs_real _readdir). This is normalT

Examp\e;

find 27968 97997.204322: 707897 cycles:pp:
7fffco34eac? read_extent_buffer ([kernel.kallsyms])
7fffco32e4f7 btrfs_real_readdir ([kernel.kallsyms])
7fff81229eb8 iterate_dir ([kernel.kallsyms])
7fff8122a359 sys_getdents ([kernel.kallsyms])

7fff81850fc8 entry_SYSCALL_64_fastpath ([kernel.kallsyms])
c88eb __getdents64 (/1ib/x86_64-1linux-gnu/libc-2.23. s«

T+ Usuallfj means either your program did a system
call o there was o page Fault, and it's telling you
exacHy which kerne! functions were called as o
cesult o that sysaall .

For example (because T'm Using the birfs file system)
in this case the ‘3e‘\'den+s' syscall calls the
bteks_real- ceaddir fonction . Neat!

oh, the kernel isn't magic,
i+ kinda. makes sense !

* per £ cheat sheet %

'mporhrd’ command line argoments :

¥ what dota to getep
=F: pick sample ‘Frequenct:)
Rk record stack traces

@ what pogramis) to look atw
- entire system
- p: specify a PID

-€: choose events 4o record COMMAND : ron this cmd

* perf top: get updates live T &

Sample CPUs at 49 Hertz, show top symbols:
perf top -F 49

Sample CPUs, show top process names and segments:
perf top -ns comm,dso

Count system calls by process, refreshing every 1 second:
perf top -e raw_syscalls:sys_enter -ns comm -d 1

Count sent network packets by process, rolling output:
stdbuf -oL perf top -e net:net_dev_xmit -ns comm | strings

Buoit Qundums
vans

* pe(‘f’ sto} : count events Y coU counters ¥

CPU counter statistics for COMMAND:
perf stat COMMAND

Detailed CPU counter statistics for COMMAND:
perf stat -ddd command

Various basic CPU statistics, system wide:
perf stat -e cycles,instructions,cache-misses -a

Count system calls for PID, until Ctrl-C:
perf stat -e 'syscalls:sys_enter_*' -p PID

Count block device I/0 events for the entire system, for 10 seconds:
perf stat -e 'block:*' -a sleep 10

* Reporﬁng *
Show perf.data in an ncurses browser:

perf report

Show perf.data as a text report:
perf report --stdio

List all events from perf.data:
perf script

Annotate assembly instructions from perf.data
with percentages

|1_perf annotate [--stdio]

Need kernel debuginfq

sourced from brendangregs. com/pec§.nfml,
which has many more great examples

*peck teace: trace system calls & other evenfs
Trace syscalls system-wide # Trace syscalls for PID
perf trace perf trace -p PID
*pecf record: record peofiling data
records into

Sample CPU functions for COMMAND, at 99 Hertz: F dota file
perf record -F 99 COMMAND perT. !

Sample CPU functions for PID, until Ctrl-C:
perf record -p PID

Sample CPU functions for PID, for 10 seconds:
perf record -p PID sleep 10

Sample CPU stack traces for PID, for 10 seconds:
perf record -p PID -g -- sleep 10

Sample CPU stack traces for PID, using DWARF to unwind stack:
perf record -p PID --call-graph dwarf

* pecf (eco(d : fecocd tracing dotock

Trace new processes, until Ctrl-C: 'k\\recoﬂﬂs into
perf record -e sched:sched_process_exec -a .
perf.data file

Trace all context-switches, until Ctrl-C:
perf record -e context-switches -a

Trace all context-switches with stack traces, for 10 seconds:
perf record -e context-switches -ag -- sleep 10

Trace all page faults with stack traces, until Ctrl-C:
perf record -e page-faults -ag

* addins new trace events x

Add a tracepoint for kernel function tcp_sendmsg():
perf probe 'tcp_sendmsg'

Trace previously created probe:
perf record -e -a probe:tcp_sendmsg

Add a tracepoint for myfunc() return, and include the retval as a string:
perf probe 'myfunc%return +0($retval):string'

Trace previous probe when size > 0, and state is not TCP_ESTABLISHED(1):
perf record -e -a probe:tcp_sendmsg --filter 'size > 0 && skc_state != 1' -a

Add a tracepoint for do_sys_open() with the filename as a string:
perf probe 'do_sys_open filename:string' 12

per'F stat: CPU counters Q@@@@

If you're ”ri+‘“3 high-performance programs,
there ace oo lot of CPU/hacdware -level events
you might be intecested in caun’hns-.

page
faults
TLR
misses

Bo.s.‘cal% Linux can ask your CPU to start recordms

various statistics:
hey can you count)(on itY
@ D L1 coache hits +
inux

misses
As le.: here's pactof the output of “perf stat -ddd 1s”
an exomp pe pv T4 is for detailed

instructions
pec cycle

You might wonder:

how can T tell what
the LI cache hitrate

is though?? T4 need to
look. INSIDE THE CPL?(

hacdware
counters?

he(j can you count
L1 cache hits +
misses ?

$ sudo perf stat -ddd 1ls -R /
Performance counter stats for 'ls -R /':

3849.615096 task-clock (msec) # 0.535 CPUs utilized
26,120 context-switches # 0.007 M/sec
342 page-faults # 0.089 K/sec
8,583,744,395 cycles # 2.230 GHz
10 10,337,612,795 instructions # 1.20 1insns per cycle
billion 1,987,339,660 branches # 516.244 M/sec
nstructions 20,738,878 branch-misses 1.04% of all branches
haepen 2,883,947,626 dTLB-1loads b{qu # 749.152 M/sec

;;aﬁ-’ 7.192555725 seconds time elapsed prediction
" stats

perf stat: count any event-

You can actually count lots of different events with
pert stot. The same events you can record with pecf record!

Here are a couple examples of vsing ‘perf stod' on

Is =R (which Jists files, recu(sive(%/ so makes lots of syscalls)

@O count context switches between the

kernel and userspace !

$ sudo perf stat -e context-switches 1ls -R /

Performance counter stats for 'ls -R /':
20,821 context-switches

® coont system calls!

wi\dca(d
$ sudo perf stat -e 'syscalls:sys_enter_*' 1ls -R / > /dev/null
~? 8,028 syscalls:sys_enter_newlstat

'j_ con these 15,167 syscalls:sys_enter_write

‘\,\‘(W%\,\ 254,755 syscalls:sys_enter_close

X -0 254,777 syscalls:sys_enter_open

ser ok 509, 496 syscalls:sys_enter_newfstat

'\0% o 509,598 syscalls:sysfenter,getdentg dicector
Yop \is¥ entcies

perf stat does introduce some overhead. Counting *every
System call for “$ind" made the program run up to
6 +imess slower in my brief expeciments.

T think ag lons as you only count o Few different

events (like jUS+ +he'syscalls:sys_enter_open’ event)
it should be fine . T don't 100% vnderstand w\mj +here's
s0 much cvechead here. though.

pervc trace

Stoce is an awesome Linux debugging teol that=
traces systemcalls. T+ has one problem though

Program

per-‘: trace traces system calls, but with woyless
ovechead. T+'s safe to run in production, unlike strace.

oh no now I
am runn.‘n%
10x slewer

T am going te
+race you |

Thece ove 2 disadvaniages though (as of Linux 4.9)

© sometimes it drops system calls

[4his is sort of an n.d\lan'l'qae because it J‘il’:‘;tia;j

@ it won't show you the shmgs that™ ace
being read (writien.

He(e'g a ('OMPan'Sor\ o‘F both strace and Pe(..r_ trace
output, on the same program.

Ul Xei \ \l 1

v no sTring ~ NV string! <
brk(brk: ©x2397000) v - brk(ex2397000) & = 0x23.
write(fd: 2</dev/pts/18>, buf: 0x23! - write(2, "bork@kiwi:~$", 13) = 13

read(buf: 0x7ffd77b0a8d7, count: 1 - read(0, "\4", 1) 1
ioctl(cmd: TCGETS, arg: 0x7ffd77bea: - ioctl(®, TCGETS, {B38400 opost isig..
ioctl(cmd: TCSETSW, arg: Ox7ffd77be: — ioctl(®, SNDCTL_TMR_STOP or TCSETSW,
\ !
These have the same’weite’ system call bot only strace actually
shaws you what sting was weitlen .
RecenHS T used pecf trace and it told me Docker was ‘“"""j ‘shat on
200,000¢ files which was a VERY USEFUL CLUE to help figure out
that Docker gets cantainer sizes by looking at every file. T used pect

trace because T didnt wont to deal with strace’s overhead
lo

how pecf works: overview

Now that we know how to use perf, |ets sece
how it works ¥

The perf system is split into 2 parts:
@ o program in userspace called “pect”
@ a system in the Linux Kernel

When you run ‘perf record’, ‘perf stat’, or' pect top’
1o (5e+ information aboot o program, here's what happens:

- per‘F asks the kemel to collect informadion

Pro'? ile this program' ‘ 5

perf collect 575+em calls [

program
Linux
ount netvork packets¥ > kernel

¥ the kernel 3e+s somples /Fraces / CPU counters
from the programs pef asks about.

— perf displays +he doto. back to you ina
(hope{ullij\ useful way .

So hece's the biq picture:

0 @ 53

perF userspace progams Im
me program analyzing
17

Linux
kernel

on kecnel versions

per‘? works reo.\\‘j c\osehj with the Linux kermel. This
means a_ couple of -Hﬁngs-.

—* You need to install o version of perf that
exacHy modches your kemel version.

On Ubunty, you can do that with:

Sudo QP+‘SQ+ install linux-tools - $ (uname -v)

— pecf's features (and sometimes command line.
0p+ions\ change between kernel versions.

The first version of pecf was in Linux 2.6

This also means that there's a pecf docomentation folder
in +he Linux %H' reposi‘l’onj! You tan see it on github:

github.com/torvalds/linux/tree/master/tools/perf/Documentation

Some of the cool things in there:
- per{l. dato file format 5 ¢

- how 1o use pect's built in Python intecpreter (1)
o write scripts
- all the man pages for each perf subcammand
Geoe) felish EesDifrace;
iy Gery g (il (DI G

how profiling with perf work s

The Linux Kernel has o built in sampling profiler:

T checked what function the program

Was running 50,000 times and here
Linux are the results!

How does Linux know which functions your program is
running ﬂ\oush?. Well -- the Linux kemel is in charge of
scheduling.

That means that at all times it has o list of every process
and the address of the CPU instruction that process is

Corrently waning. That address is called the instruction pointec.

Here's what the information the Linux kemel has looks like:

command PID +hread 10 instruction painter
python 2379 2379 Ox0073549d2d
bash 1229 1229 Ox 00 123456
use_cpu 4qqi 4qq| Oxabababab

use. cpu 4qal 444) Ox a.babbbbb

Sometimes Per{l can't figure out how to turn an instruction

pointer address into o function name. Here's an example of
what that looks like:

1] m.as(-er{‘ous address f1
0.00% nodejs nodejs

[.] 6x0000000000759d20
0.00% V8 WorkerThread [kernel.kallsyms]

[k] hrtimer_active

which programming languages
con perf profile?
The way perf usually figures out what Ffunction your

PrOS(QMS are runnins (A

0 get the program's instroction pointer address

@ get a copy of the program’s stack

@ unwind the stack to find the address of
the current function call

@ use the program's symbol table to figure
out the name of the symbol that address
Corresponds to 1

The important {-hins to understand is that peﬁc will by defavult
aive you a symbol from the program's symbol table

That means perf won't give you function names for binaries
where the symbols ace stripped.

Here's how perf can help you, broken doun by programming langoage:

pert will tell you what

Pythen, Ruby, PHP)
other intecpreted
|ﬂn30(la¢$.

fonction is running

node.&s IVM Per‘F will fell
Sava /Scala / clojore O 'anguages you aboot the

intecpreter

ecf can use an alenate (can still be useful !)

method to findthe “real " function
(like we explained on page 10

per{’: under the hood

THs often useful to have o basic understanding of*
how our tools ace implemented. Sa let's loak ot the

inferface the userspace toal (*pers’) uses ta talk to
the Linux kernel. Here's what happens, basicallkj'.

O perf calls the pecf_event_open system call

@ the kernel writes “events” to a ring buffer
in user space

@ perf reads events off that ring buffer and
de pl035 them to Yyou Some hows

What's a ring busfer?
Basrca(lg) . s important to use a limided amaunt

of memory for prodiling events. So +he kernel allocates
a Fixed amount of memary:

[o

each of these is space for 1 record
ond whea that memory 6e+s full becavse

New records are being weitten faster than pecf can
read them)... FFEFFEEEE]

whoops! we'e out of space, guess T
~ 1
can't write more eventsf

L-‘nux

So if you see warnings from perf about events
being dropped, that’s what's happening.
21\

‘H\e pemc- event_ open 575+em call

This system call is how pecf asks the Linux kemel
to shact sampling o tracing.

Here's the system calls signature:

int perf_event_open(struct perf_event_attr *atir,

pid_t pid, int.cpu, int\group fd,
unsigned/long[flags),
PIDZ CPU to look at. Yhis is ‘whece most of

Can be “all of them" the arguments are

T dont £ind this man page all that usefol Foc day-to-day
pecf usage. But! Did you know that +he ‘perf’ CLT tool isn¥

the only program that uses +he pecf_event_open syscall?

The ‘bec’ projectisa toolkit for writing advanced profiling
tools vsing e BPF. @ g'\-Hwb.com liovisor /bee

With bee, you can celoch‘velj easily vse pecf- event_open
Yo create your oun custom profiling Hracing events 1 A

then you can write code to aggregate/ display them aay
Wow you wont.

Search BCC_PERF. OUTPUT in +he bec docs 4o learn
Mmoce.

12

& more perf resources &

Thanks for readingV A few more usefol resources:

Oregg’s 5 m%ﬁ'o.vouri’re per¥ (escorce. Hig blog £

(*9 Brendan T brendangregg.ccm/perf.htmlc—
bloS

talks ace also usefol !

L\,JN is a Srea‘i’ Linux pub\icah‘on, oand
‘H\e5 sometimes publish articles about pecf !

Linux Weekly News
LWN.net

Pe(‘F has man pages as 3°U'd expect.

“man pecf top”, for example.

most impoﬁqnﬂs: é

- Pick o program and Fry o peofile it !
- See what your kecnel is dcn'nS under Jiffecent workloads?

—+ Tey cecording [counting o few kinds of pecf events and

see what happens [
good luck f
? have fun WU
\

'SULIA
23

like +his?
there are more
zines at:
hf'[‘p=//\jvns.co\/2ines

CC-BY-NC-SA
Soulia Evans , wizard industries 2018

