Linux fracin3 sys+ems
4 how they fit together

o
DQ+Q Soulces - (kernel fonctions) .
usbt/
uprobe
m dtrace probes

Lsecspace
C functions

Ways to extract .
data:

§

+
3
o
2
n

v
s
>

3
[ %)

LTTnS userspace,
fa cing

&
T

%

frontends:

trace -cmd

|

trace
compass

b\/ Suua Evans

:



what's this?

T've been confused about the Linux tracing
ecosystem for a long time. T finally figured
ovt the basics so this zine is a quick
hish- level overview

SUL[A Evans
@bork
ths://d‘vns.ca



- \’\/mcing/}

Let's say you want to

m see every timeé A cectain function is
called (and its arguments)

= See etvery time an ‘event’ happens (like the
cpy swil'chfnj which process it's running -
thot event is called sched - switch)

= define your own Jcrqcinj events

= agaceqale (to see exacly how much time was
spent in a function)

t6 do this, we need to:

- define tracing events (either ot compile time oc
at runtime). aka data sources

- 0way 1o collect delicious +rac-'n3 data

and send it to usecspace . Usvally some'fhirj
in the kemel collects tracing data.

- a frontend to use 1

[et's go see what the oph‘ons are —

(the ecosysiem is a little f cagmented 15)



D~ _
x - data sources = *

There are 2 bosce kinds of data soucces:
(ho‘i’ qm‘l'e the riglr\{" "'erminolosy but Im not sure what is)

. ‘c\\/nam(c probes': chanse your assemb(«j code ot runtime
4o instroment it

. ‘f’racepoirﬂ'gl: Choose a‘i’ cgmp;le +ime. (oc in advance
anyway\ which events can be traced,
d\/u-"\anr\@
probe_s
.- Linux can you change
- that (kernel/userspace)
o.ssembhj code so T

/N\

Know when it's run?

yeah no
problem &

® Compile o trace point into your program

(you can also often define them ot ryntime)
@ os long as nobody activates it,
~no overhead !
@ Your users canactivate the tracepoint
(with tools like ftrace /dtrace « friends)
+o 3eJc info about what your program
(s doins.



Hece are the S data sources the tools in
thig 2ine use:

let you trace any instruction / function
kprobes 4 J
call / function ceturn in the kemel.

Kecnel kprobe.hd' in the kemel docs says more.
uprobes like Kprobes, but for userspace programs!
userspace

+racepo(n*s:

Yhese are defined b‘j o. TRACE-EVENT

macro. For example there are
2 +(accpom’rs (enterfexit) for

Kernel
trace points

kernel every syscal\

dtrace probes dtcace isn't a Linux program , bot
aka USOT probe$ lots of programs (like PYH‘O“/"‘YS‘{W
users pace con be compiled with dtrace probes.

And thece are Linux tracing tools that can
use those probesf

‘H'ns -ust is a +mcins format (works
with LTTnS) that works en‘h'relb in

vserspace userspa.ce.



\l\’ays to ge'l' (delicious delicious )
{'racmj da‘f‘q
There are a bunch of ways to collect tracing data.

Thegse 2 ace the ones that are built into
the Linux kernel.

f

mogical filesystem at

Kprobes /sys/keme\/debug/fracfng.
SUP?( powecful, you intecact

kernel ith i i

with it by reading from /
o y reading
weiting to files.

perf'_events ® call the perf_event_open
syscall

kernel @ the kernel writes data to
O ring buffer (“perf buffer’)

The newest and most powerful

eBPF @ Jrite o small eBPF

P(OS(GM

@ Ask Linux to attach it +o

df:‘:‘e kerne! o kprobe /uprobe/ tracepaint
pEcs2 tracepoints
(® The eBPF program sends data to

userspace with ftrace /pert/
BPF maps



more Waljs

These are all developed outside the kernel
(-quU%h fhe:j all uH’imofe(j insect Kerne| modules)

@ Compile it info a

custom Kernel module

kernel ® Tnsert that module
trocepoints into the kernel

® Tnsert the LTTng

kernel module

kernel - Use the LTTng tools to
G ©

Sef Y to collect data
for You

\l)usT traces sys‘rem calls

T think



v ! ftel1tie,,,
L4

$Frontend s-‘

N
A)
{

177

LOL1r7rp 00000

tools 4o help you:

* tell the kecnel what data to coltect/
progcams te cun

. c\lsplay the data in a usefol way

‘perf’ can yse Pe{f-eventopen

(surprise) and also ftrace to
for peck + \reca(d +ra'lc;n3 data. T use
ftrace per‘f trace to trace syscalls.

ftrace by itself doesn™ reall% have
o. frontend.

\J

ftrace

5us1’ cat this text file
what's the problem

il

A command line Ffrontend to ftrace,
Sor Ftrace a lot easier to use.

P erf - tools

A collection of sceipts by

. The kprabe/ b
for perf /ficace Bre-ndar\ 6“’33 I'he Kpro e. Lprode
Scrup‘*s are fun to play with 1



> mace frontends =

4 L
Py+hon frame work to help you write

eBPF programs. Alse tons of examples !
for eBPF

hH‘ps ://caifhub.com /ioviser /bcc

Can draw grqphs of sched_ switch
events recarded bS fteace.

for ftrace (and "‘aﬂbe more things? unsuce.)
%raph.‘cal trace-cmd Frontend
foc Ftrace haven't fried it yet

all frontends fac their
resPec’rive data collectors




whs eBPF is exci-\-ms

+ if supports o ton of data soucces (kprobes /uprobess
USDT probes/ tracepaints

- you can write your oun prageams and insert +hem

into +he kKernel so it’s high performaace and flexible

— its P{thj sefe: what eRPF pregcams (an do is
s{’ricHS limited bs the kecnel (ne losps | no

Q(bi*(qrs memory access). Every program runs

‘H‘(OU%I" o verifier before it can run.

- People are builéins cool easy to use tools with
it (strace boilt with eBPF? yesplease D

Beendan 6(@33'5 b|°3 has a TON of posts
aboot eBPF, and

h+ ps:// %'.-Hnub. com /iovisoc /bec

has lots of tools written using it, and makes i+
easier o write your own



thanks §or readins

To learn more:
- brendan %{egg's ble

- the kemel docs on kpobes /Fftrace,
in the Documentation folder

- LWN has & bonch of useful articles
on ftcace



like this ?
You can pr‘?ni‘ mare V

for free ¥
hH‘p =//Jvns.ca/zines

CC-BY-NC-SA

Sulia Evans, wizard wow fun industries 2017



